ar X iv : m at h / 05 07 37 3 v 1 [ m at h . FA ] 1 8 Ju l 2 00 5 OPERATOR AMENABILITY OF FOURIER – STIELTJES ALGEBRAS , II
نویسندگان
چکیده
We give an example of a non-compact, locally compact group G such that its Fourier–Stieltjes algebra B(G) is operator amenable. Furthermore, we characterize those G for which A * (G)—the spine of B(G) as introduced by M. Ilie and the second named author is operator amenable and show that A * (G) is operator weakly amenable for each G.
منابع مشابه
m at h . FA ] 2 1 Ju n 20 06 OPERATOR AMENABILITY OF FOURIER – STIELTJES ALGEBRAS , II
We give an example of a non-compact, locally compact group G such that its Fourier–Stieltjes algebra B(G) is operator amenable. Furthermore, we characterize those G for which A * (G)—the spine of B(G) as introduced by M. Ilie and the second named author—is operator amenable and show that A * (G) is operator weakly amenable for each G.
متن کاملar X iv : m at h / 03 08 16 9 v 3 [ m at h . FA ] 1 1 D ec 2 00 3 Applications of operator spaces to abstract harmonic analysis
We give a survey of how the relatively young theory of operator spaces has led to a deeper understanding of the Fourier algebra of a locally compact group (and of related algebras).
متن کاملar X iv : m at h / 06 11 77 4 v 1 [ m at h . FA ] 2 5 N ov 2 00 6 MODULE EXTENSIONS OF DUAL BANACH ALGEBRAS
In this paper we define the module extension dual Banach algebras and we use this Banach algebras to finding the relationship between weak−continuous homomorphisms of dual Banach algebras and Connes-amenability. So we study the weak∗−continuous derivations on module extension dual Banach algebras.
متن کاملar X iv : m at h / 05 04 37 3 v 1 [ m at h . Q A ] 1 9 A pr 2 00 5 Lax Operator for the Quantised Orthosymplectic
متن کامل
ar X iv : m at h / 05 01 13 9 v 2 [ m at h . FA ] 1 A ug 2 00 5 Stability of Adjointable Mappings in Hilbert C ∗ - Modules ∗
The generalized Hyers–Ulam–Rassias stability of adjointable mappings on Hilbert C∗-modules is investigated. As a corollary, we establish the stability of the equation f(x)∗y = xg(y)∗ in the context of C∗-algebras.
متن کامل